Getting started with stenographer
Source:vignettes/getting-started-stenographer.Rmd
getting-started-stenographer.Rmd
Introduction
The stenographer
package provides a flexible and
powerful logging system for R applications. It includes a
Stenographer
class for creating customisable loggers, as
well as helper functions for debugging and error reporting. This
vignette will guide you through the basics of using the
stenographer
package and demonstrate how to leverage its
features to improve your R workflows.
Installation
You can install the released version of stenographer from CRAN:
install.packages("stenographer")
You can install stenographer from www.github.com/dereckmezquita/stenographer with:
remotes::install_github("dereckmezquita/stenographer")
Basic Usage
First, let’s load the package and create a basic stenographer:
box::use(stenographer[Stenographer, LogLevel, messageParallel])
# Create a basic logger
steno <- Stenographer$new()
# Log some messages
steno$info("This is an informational message")
#> 2025-01-16T21:44:49.605Z INFO This is an informational message
steno$warn("This is a warning")
#> 2025-01-16T21:44:49.606Z WARNING This is a warning
steno$error("This is an error")
#> 2025-01-16T21:44:49.636Z ERROR This is an error
Customising the Stenographer
You can customise the Stenographer
by specifying the
minimum log level, output file, and custom print function:
# Create a custom stenographer
custom_steno <- Stenographer$new(
level = LogLevel$WARNING,
file_path = "app.log",
print_fn = message
)
custom_steno$info("This won't be logged")
custom_steno$warn("This will be logged to console and file")
#> 2025-01-16T21:44:49.925Z WARNING This will be logged to console and file
custom_steno$error("This is an error message")
#> 2025-01-16T21:44:49.926Z ERROR This is an error message
Logging to a Database
The Stenographer
class supports logging to a
SQLite
database. Here’s how you can set it up:
box::use(RSQLite[ SQLite ])
box::use(DBI[ dbConnect, dbDisconnect, dbGetQuery ])
# Create a database connection
db <- dbConnect(SQLite(), "log.sqlite")
# Create a Stenographer that logs to the database
db_steno <- Stenographer$new(
db_conn = db,
table_name = "app_logs"
)
# Log some messages
db_steno$info("This is logged to the database")
#> 2025-01-16T21:44:50.100Z INFO This is logged to the database
db_steno$warn("This is a warning", data = list(code = 101))
#> 2025-01-16T21:44:50.114Z WARNING This is a warning
#> Data:
#> {
#> "code": 101
#> }
db_steno$error("An error occurred", error = "Division by zero")
#> 2025-01-16T21:44:50.159Z ERROR An error occurred
#> Error:
#> "Division by zero"
# Example of querying the logs
query <- "SELECT * FROM app_logs WHERE level = 'ERROR'"
result <- dbGetQuery(db, query)
print(result)
#> id datetime level context msg data
#> 1 3 2025-01-16T21:44:50.159Z ERROR <NA> An error occurred <NA>
#> error
#> 1 ["[\\"Division by zero\\"]"]
Using Context
The Stenographer
class supports a context feature, which
allows you to add persistent information to your log entries:
context_steno <- Stenographer$new(
db_conn = db,
table_name = "context_logs",
context = list(app_name = "MyApp", version = "1.0.0")
)
context_steno$info("Application started")
#> 2025-01-16T21:44:50.240Z INFO Application started
#> Context:
#> {
#> "app_name": "MyApp",
#> "version": "1.0.0"
#> }
# Update context
context_steno$update_context(list(user_id = "12345"))
context_steno$info("User logged in")
#> 2025-01-16T21:44:50.249Z INFO User logged in
#> Context:
#> {
#> "app_name": "MyApp",
#> "version": "1.0.0",
#> "user_id": "12345"
#> }
# Log an error with context
context_steno$error("Operation failed", data = list(operation = "data_fetch"))
#> 2025-01-16T21:44:50.258Z ERROR Operation failed
#> Data:
#> {
#> "operation": "data_fetch"
#> }
#> Context:
#> {
#> "app_name": "MyApp",
#> "version": "1.0.0",
#> "user_id": "12345"
#> }
# Example of querying logs with context
query <- "SELECT * FROM context_logs WHERE json_extract(context, '$.user_id') = '12345'"
result <- dbGetQuery(db, query)
print(result)
#> [1] id datetime level context msg data error
#> <0 rows> (or 0-length row.names)
# Clear context
context_steno$clear_context()
context_steno$info("Context cleared")
#> 2025-01-16T21:44:50.269Z INFO Context cleared
Combining Features
You can combine various features of the Stenographer
class to create a powerful logging system:
# Create a combined Stenographer
combined_steno <- Stenographer$new(
level = LogLevel$INFO,
file_path = "combined_app.log",
db_conn = db,
table_name = "combined_logs",
context = list(app_name = "CombinedApp", version = "2.0.0"),
print_fn = messageParallel,
format_fn = function(level, msg) {
# manipulate the message before logging
msg <- gsub("API_KEY=[^\\s]+", "API_KEY=***", msg)
return(paste(level, msg))
}
)
# Log some messages
combined_steno$info("Application started")
combined_steno$warn("Low memory", data = list(available_mb = 100))
combined_steno$error("Database connection failed", error = "Connection timeout")
# Update context
combined_steno$update_context(list(user_id = "67890"))
combined_steno$info("User action", data = list(action = "button_click"))
# Example of a more complex query using context and data
query <- "
SELECT *
FROM combined_logs
WHERE json_extract(context, '$.app_name') = 'CombinedApp'
AND json_extract(data, '$.available_mb') < 200
"
result <- dbGetQuery(db, query)
print(result)
#> [1] id datetime level context msg data error
#> <0 rows> (or 0-length row.names)
# Don't forget to close the database connection when you're done
dbDisconnect(db)
Using Helper Functions
The Stenographer
package includes several helper
functions that can be used in conjunction with the
Stenographer
class to provide more detailed information in
your logs. Let’s explore how to use these functions effectively.
Finding and Logging Data Issues
Suppose we have a dataset with some problematic values, and we want
to log where these issues occur. We can use the
valueCoordinates
function to locate the problematic values
and include this information in our log messages.
box::use(stenographer[valueCoordinates])
# Create a sample dataset with some issues
df <- data.frame(
a = c(1, NA, 3, 4, 5),
b = c(2, 4, NA, 8, 10),
c = c(3, 6, 9, NA, 15)
)
# Create a Stenographer
steno <- Stenographer$new()
# Find coordinates of NA values
na_coords <- valueCoordinates(df)
if (nrow(na_coords) > 0) {
steno$warn(
"NA values found in the dataset",
data = list(
na_locations = na_coords
)
)
}
#> 2025-01-16T21:44:50.468Z WARNING NA values found in the dataset
#> Data:
#> {
#> "na_locations": [
#> {
#> "column": 1,
#> "row": 2
#> },
#> {
#> "column": 2,
#> "row": 3
#> },
#> {
#> "column": 3,
#> "row": 4
#> }
#> ]
#> }
This will produce a log entry like:
Logging Errors with Context
When an error occurs, it’s often useful to catch and log not just the
error message, but also the context in which the error occurred. Here’s
an example of how to do this using the Stenographer
class
and helper functions:
box::use(stenographer[tableToString])
steno <- Stenographer$new()
process_data <- function(df) {
tryCatch({
result <- df$a / df$b
if (any(is.infinite(result))) {
inf_coords <- valueCoordinates(data.frame(result), Inf)
steno$error(
"Division by zero occurred",
data = list(
infinite_values = inf_coords,
dataset_preview = tableToString(df)
)
)
cat("Division by zero error")
}
return(result)
}, error = function(e) {
steno$error(
paste("An error occurred while processing data:", e$message),
data = list(dataset_preview = tableToString(df)),
error = e
)
cat(e)
})
}
# Test the function with problematic data
df <- data.frame(a = c(1, 2, 3), b = c(0, 2, 0))
process_data(df)
#> 2025-01-16T21:44:50.569Z ERROR Division by zero occurred
#> Data:
#> {
#> "infinite_values": [
#> {
#> "column": 1,
#> "row": 1
#> },
#> {
#> "column": 1,
#> "row": 3
#> }
#> ],
#> "dataset_preview": " a b\n1 1 0\n2 2 2\n3 3 0"
#> }
#> Division by zero error
#> [1] Inf 1 Inf
Logging in Parallel Environments
When working with parallel processing, standard logging functions
might not work as expected. The stenographer package provides a
messageParallel
function to ensure messages are properly
logged from parallel processes:
box::use(future)
box::use(future.apply[future_lapply])
steno <- Stenographer$new(print_fn = messageParallel)
future::plan(future::multisession, workers = 2)
result <- future_lapply(1:5, function(i) {
messageParallel(sprintf("Processing item %d", i))
if (i == 3) {
steno$warn(sprintf("Warning for item %d", i))
}
return(i * 2)
})
future::plan(future::sequential)
This ensures that messages from parallel processes are properly captured and logged.
Conclusion
The stenographer package provides a robust and flexible logging system for R applications. With features like file logging, database logging, and context management, you can create informative and context-rich log messages that greatly aid in debugging and monitoring your R scripts and applications.
Moreover, by using helper functions like
valueCoordinates
and tableToString
you can
more easily track down and log data issues and errors, providing
valuable information for troubleshooting and analysis.
Remember to adjust the log level, output file, database settings, and other parameters to suit your specific needs. The ability to query logs using SQL, especially with context-based filtering, makes it easy to analyze and troubleshoot issues in your applications.